11 research outputs found

    Integrable many-body systems of Calogero-Ruijsenaars type

    Get PDF
    A dolgozat a Calogero-Ruijsenaars típusú Liouville integrálható rendszerekkel kapcsolatos alábbi eredményeinket mutatja be: 1. A racionális Calogero-Moser rendszer spektrális koordinátáit szolgáltató explicit formula bizonyítása. 2. A trigonometrikus BC(n) Sutherland rendszer hatás-szög duálisának kidolgozása hamiltoni redukció alkalmazásával. 3. A trigonometrikus BC(n) Sutherland rendszer egy Poisson-Lie deformációjának levezetése hamiltoni redukció alkalmazásával. 4. A hiperbolikus BC(n) Ruijsenaars-Schneider-van Diejen rendszer Lax reprezentációjának kidolgozása. 5. Trigonometrikus és elliptikus Ruijsenaars-Schneider modellek konstrukciója a komplex projektív téren. Abstract: This thesis presents our results on Liouville integrable systems of Calogero-Ruijsenaars type: 1. We prove an explicit formula providing canonical spectral coordinates for the rational Calogero-Moser system. 2. We explore action-angle duality for the trigonometric BC(n) Sutherland system using Hamiltonian reduction. 3. We derive a Poisson-Lie deformation of the trigonometric BC(n) Sutherland system using Hamiltonian reduction. 4. We construct a Lax pair for the hyperbolic BC(n) Ruijsenaars-Schneider-van Diejen system. 5. We present an explicit construction of compactified trigonometric and elliptic Ruijsenaars-Schneider systems

    Lézerek az optikában, spektroszkópiában és az anyagtudományokban = Lasers in optics, spectroscopy and material sciences

    Get PDF
    Ezen pályázat eredményei az SzTE Fizika Doktori Iskola négy tudományos részterületén (femtoszekundumos optika, lézerek anyagtudományi alkalmazása, valamint csillagászati- és fotoakusztikus spektroszkópia) dolgozó kollektíva egymással összefüggő, azt kiegészítő tudományos munkája révén jöttek létre, melyek főbb eredményei a következőek: Egy új, csak lineáris optikai eljárást fejlesztettünk ki lézerimpulzusok hordozó-burkoló fázis csúszásának mérésére, mely független a hullámhossztól és a sávszélességtől. Immerziós, két-nyalábos interferenciás lézerindukált hátsóoldali nedves maratási eljárást alkalmazva 104 nm periódusú kvarc rácsot készítettünk. A lézerrel generált fém-dielektrikum rácsok periódikus adhézió- és plazmon-mező modulációján alapuló új SPR bio-szenzorizációs eljárást dolgoztunk ki. Folyadékok ultrarövid impulzusokkal történő ablálásával kontrollált méreteloszlású és összetételű nanorészecskék előállításának új módszerét dolgozták ki. AFM fejlesztés során egy új amplitúdó és fázismérési algoritmust dolgoztunk ki, amely egyetlen rezgésből is képes az amplitúdó és fázis meghatározására. Kifejlesztettünk egy lézeres ammóniamérő műszert, amely alkalmas koncentráció és fluxus nagyérzékenységű, automatikus mérésére, terepi körülmények között. Nagyfelbontású spektroszkópiával kimutattuk, hogy két módusban rezgő csillagokban a nagyobb fémtartalmúaknál a rezgési periódusok aránya kisebb. | The results of this project have been achieved by the co-operative work of colleagues from four scientific fields of the Physics PhD Program of the University of Szeged, as femtosecond optics, laser-matter (surface) interactions, photoacoustical and astronomical spectroscopy. The major findings of these basic researches are as follows: A new linear optical method was developed for the measurement of the carrier envelope phase drift of laser pulses, which is independent of the wavelength and bandwidth. Immersion two-beam interferometric laser induced backside wet etching method was applied to prepare fused silica gratings with a 104 nm period. Novel SPR bio-sensing method was developed based on the periodic adhesion and plasmon-field enhancement on the laser-induced metal-dielectric gratings. It has been demonstrated that ultrashort pulse ablation of liquids is a novel approach to the production of nanoparticles of controlled composition and size distribution. A new amplitude and phase measurement algorithm for AFM was developed, which allows the determination of phase and amplitude from one vibration of the tip. We have developed a laser based instrument for accurate and automatic ammonia concentration and flux monitoring under field conditions. From high-resolution spectroscopy we pointed out that in double-mode pulsating stars the ones with higher metallicities have lower period ratios

    nucleAIzer: A Parameter-Free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer

    Get PDF
    Single-cell segmentation is typically a crucial task of image-based cellular analysis. We present nucleAIzer, a deep-learning approach aiming toward a truly general method for localizing 2D cell nuclei across a diverse range of assays and light microscopy modalities. We outperform the 739 methods submitted to the 2018 Data Science Bowl on images representing a variety of realistic conditions, some of which were not represented in the training data. The key to our approach is that during training nucleAIzer automatically adapts its nucleus-style model to unseen and unlabeled data using image style transfer to automatically generate augmented training samples. This allows the model to recognize nuclei in new and different experiments efficiently without requiring expert annotations, making deep learning for nucleus segmentation fairly simple and labor free for most biological light microscopy experiments

    Synthesis of novel 17-(5’-iodo)triazolyl-3-methoxyestrane epimers via Cu(I)-catalyzed azide-alkyne cycloadditon, and an evaluation of their cytotoxic activity in vitro

    No full text
    Abstract The regioselective Cu(I)-catalyzed 1,3-dipolar cycloaddition of 3-methoxyestrane 17α- and 17β-azide epimers (3 and 5) with different terminal alkynes afforded novel 1,4-substituted triazolyl derivatives (8a-c and 10a-c). If the Ph3P in the classical CuAAC process was repleaced by Et3N, the formation of small quantities of 5-iodotriazoles (9a-c and 11a-c) was observed. For the preparation of 5-iodo-1,2,3-triazoles (9a-c and 11a-c), an improved method was developed, directly from steroidal azides and terminal alkynes, in reactions mediated by CuI and ICl as iodinating agents. The antiproliferative activities of the structurally related triazoles were determined in vitro with the microculture tetrazolium assay on six malignant human cell lines of gynecological origin (HeLa, A2780, MCF7, MB-231, MB-361 and T47D). X-ray analysis revealed the presence of the iodo substituent on the 1,2,3-triazole ring

    Rendészettudományi kutatások - Az NKE Rendészetelméleti Kutatóműhely tanulmánykötete

    No full text
    IgenA kiadvány a KÖFOP-2.1.2-VEKOP-15-2016-00001 „A jó kormányzást megalapozó közszolgálat-fejlesztés” című projekt keretében került kiadásra.Bibliogr.: a lábjegyzetekben.Angol nyelvű absztraktokkal.NemKÖFOP-2.1.2-VEKOP-15-2016-0000

    Image1.pdf

    No full text
    <p>The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154) significantly decreased infarct size when applied at 1 μM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction.</p

    Image5.pdf

    No full text
    <p>The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154) significantly decreased infarct size when applied at 1 μM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction.</p

    Image3.pdf

    No full text
    <p>The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154) significantly decreased infarct size when applied at 1 μM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction.</p

    Image6.pdf

    No full text
    <p>The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154) significantly decreased infarct size when applied at 1 μM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction.</p
    corecore